ADRENERGIQUES-ANTIADRENERGIQUES

Dr Monique VINCENS
Pharmacologie Endocrinienne

UFR Denis – Diderot (site Lariboisière-St Louis)

PHARMACOLOGIE DES CATECHOLAMINES

1/ LES DIFFERENTES AMINES SYMPATHOMIMETIQUES (catécholamines)

Noradrénaline

Adrénaline

Dopamine

2/ METABOLISME DES CATECHOLAMINES

Biosynthèse

Libération

Dégradation

3/ EFFETS PHARMACOLOGIQUES DES CATECHOLAMINES

via les $Rc \alpha$

Rc β

DA

4/ AGONISTES

5/ ANTAGONISTES

PHARMACOLOGIE DU SYSTEME ADRENERGIQUE

1/ LES DIFFERENTES AMINES SYMPATHOMIMETIQUES

1/ CATECHOLAMINES NATURELLES.

DOPAMINE Rc DA NORADRENALINE Rc α , β , ADRENALINE Rc α , β

Stimulent l'ensemble des récepteurs adrénergiques

2/ AMINES DE SYNTHESES

Sélectives d'un des trois types de récepteur: α , β , DA

Structures of the major catecholamines.

PHARMACOLOGIE DU SYSTEME ADRENERGIQUE

2/ METABOLISME DES CATECHOLAMINES

- 2.1. BIOSYNTHESE
- 2.2. LIBERATION
- 2.3. DEGRADATION

PHARMACOLOGIE DU SYSTEME ADRENERGIQUE 2/ METABOLISME DES CATECHOLAMINES

2.1. BIOSYNTHESE

-dans les neurones du système sympathiques à partir de la tyrosine:

synthèse de Dopa, puis de Dopamine puis de Noradrénaline (NA)

- dans la médullosurrénale, synthèse d'Adrénaline à partir de NA

Biosynthesis of catecholamines

PHARMACOLOGIE DU SYSTEME ADRENERGIQUE 2/ METABOLISME DES CATECHOLAMINES

2.2. LIBERATION:

- Sous l'effet de l'influx nerveux
- les terminaisons sympathiques libèrent la NA
- la médullo surrénale libèrent NA et A
- Dans la fente synaptique NA /A vont soit:
- -atteindre les Rc pour produire leurs effets physiologiques
- -être recaptées
- être dégradées

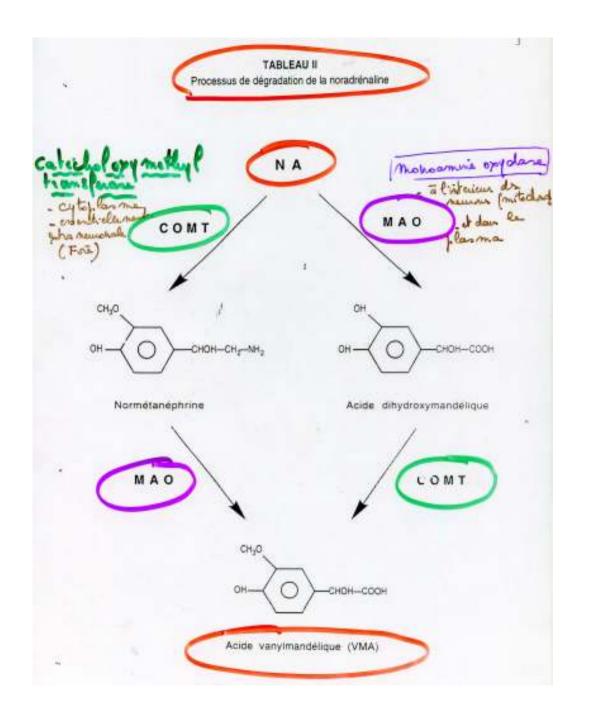
PHARMACOLOGIE DU SYSTEME ADRENERGIQUE 2/ METABOLISME DES CATECHOLAMINES

2.3. DEGRADATION

2 enzymes interviennent dans la dégradation des catécholamines:

La COMT (catéchol-oxyméthyltransférase) (extraneuronale)

catalyse la méthylation d'un des 2 atomes d'oxygène du N* catéchol


La MAO (monoamine oxydase) (neuronale et plasmatique)

catalyse la désamination oxydative des monoamines: A,NA, DA, sérotonine

transforme l'amine en aldéhyde

R-CH2-NH2 +O2+H2O — R-CHO+NH2+H2O2

MAO

PHARMACOLOGIE DU SYSTEME ADRENERGIQUE 3/ EFFETS PHARMACOLOGIQUES DES CATECHOLAMINES

1/ Stimulation des récepteurs α et β :

Effets périphériques

Effets centraux

2/ Stimulation des récepteurs Dopaminergiques

Effets périphériques

Effets centraux

PHARMACOLOGIE DU SYSTEME ADRENERGIQUE 3/ EFFETS PHARMACOLOGIQUES DES CATECHOLAMINES

3.1. STIMULATION DES Rc α

3.1.1. EFFETS PERIPHERIQUES

3.1.2. EFFETS CENTRAUX

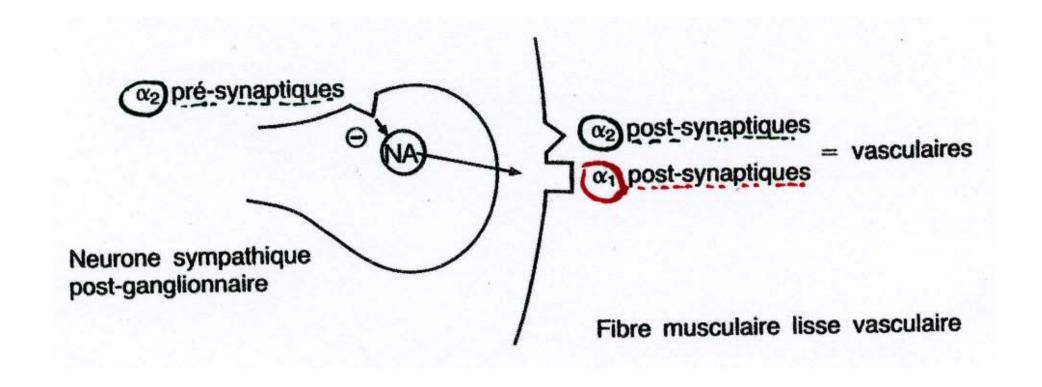
3/ EFFETS PHARMACOLOGIQUES DES CATECHOLAMINES 3.1. STIMULATION DES Rc α

STIMULATION DES RECEPTEURS α (α_1 , α_2)

- $-R_c$ postsynaptiques = α_1
- $-R_c$ présynaptiques = α_2
 - Effets Périphériques
 - Effets Centraux

3/ EFFETS PHARMACOLOGIQUES DES CATECHOLAMINES

3.1. STIMULATION DES Rc α


3.1.1. EFFETS PERIPHERIQUES

a. Via les Rc α_1 post synaptiques:

- . Vasoconstriction
- . Contraction des bronches
- . Contraction du sphincter uretral
- . Contraction utérine
- . Mydriase

b. Via les Rc α_2 présynaptiques:

diminution de libération de NA quelques $Rc \alpha_2$ postsynaptiques : agrégation plaquettaire

3/ EFFETS PHARMACOLOGIQUES DES CATECHOLAMINES

3.1. STIMULATION DES Rc α

3.1.2. EFFETS CENTRAUX

Au niveau central la NA ++ sur humeur,

Si NA augmentée dans fente synaptique= effet antidépresseur

Via les Rc α₂ présynaptiques

inhibition de la libération de NA (donc diminution dans la fente synaptique)

.effets: -hypotenseur

-sédatif

PHARMACOLOGIE DU SYSTEME ADRENERGIQUE STIMULATION DES RC $\alpha_{\text{\tiny M}}(\alpha_1 \text{ et } \alpha_2)$

- PERIPHERIE $1/\alpha_1$ postsynaptique
- .constriction muscles lisses
 - Vaisseau
 - Bronches
 - Utérus
 - Sphincter urethral
 - . Mydriase
- $2/\alpha_2$ présynaptique ++ diminution de libération de NA α_2 postsynaptique aggrégation plaquettaire

- CENTRAL

 1/ α₁ postsynaptique
 - Diminution du sommeil
 - Augmentation de vigilance

2/ α₂ présynaptique diminution de libération de NA -effet hypotenseur sédatif

3/ EFFETS PHARMACOLOGIQUES DES CATECHOLAMINES

3.2. STIMULATION DES Rc β

STIMULATION DES RECEPTEURS β ($\beta_1, \beta_2, \beta_3$)

 $\beta_1, \beta_2, \beta_3$ selon localisation sur les organes

- -Effets périphériques
- Effets centraux

3.EFFETS PHARMACOLOGIQUES DES CATECHOLAMINES

3.2. STIMULATION DES Rc β

3.2.1. EFFETS PERIPHERIQUES

 $oldsymbol{eta}_1$ coeur

+ | contractilité

C N cardiaque

D conduction AV

B excitabilité

 $oldsymbol{eta}_2$

- Vasodilatation
- Bronchodilatation
- relâchement de utérus (diminution des contractions)
- .- Diminution de Kaliémie (par augmentation de captation de K+)
- β₃ augmentation de lipolyse et thermogénèse

3.EFFETS PHARMACOLOGIQUES DES CATECHOLAMINES

3.2. STIMULATION DES Rc β

3.2.2. EFFETS CENTRAUX

Rc β_2

Effet antidépresseur +++

3.EFFETS PHARMACOLOGIQUES DES CATECHOLAMINES

3.3. STIMULATION DES Rc Dopamine (DA)

5 types de Rc DA (DA₁ à DA₅)

- Effets périphériques
- -- Effets centraux

3.3. STIMULATION DES Rc Dopamine (DA)

3.3.1. EFFETS PERIPHERIQUES

a/ FAIBLE DOSE: stimulation des Rc DA

Dilatation des vaisseaux : (D₁) - rein

» - mésentère

coronaire (diminution de TA)

» - cérébraux

Diminution de réabsorption tubulaire de Na+ (D₂)

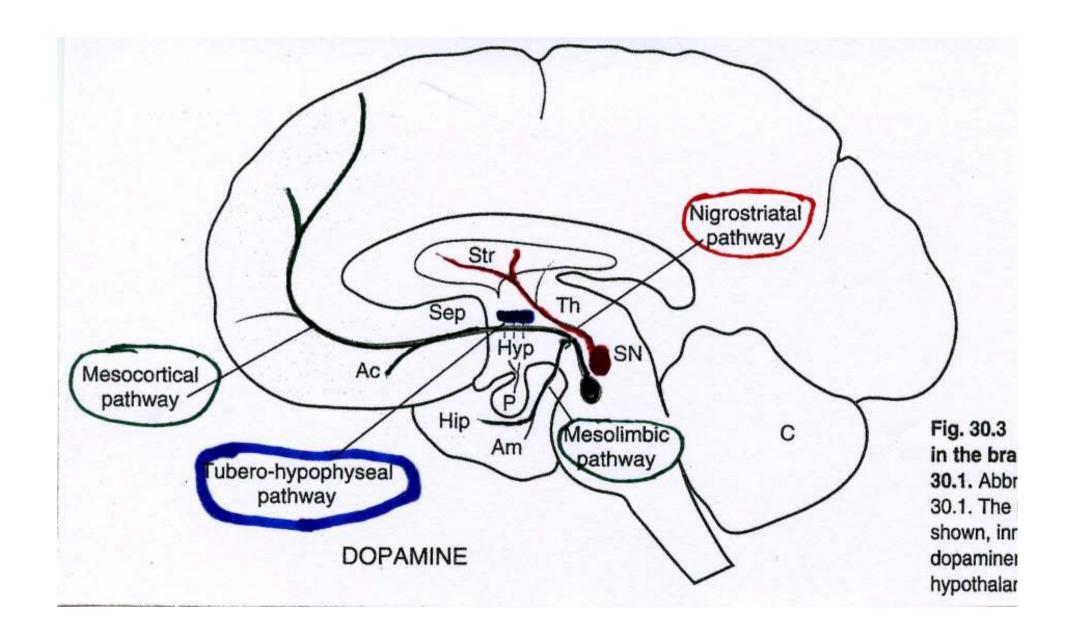
Diminution de libération de rénine et aldostérone

Inhibition de motilité gastro-duodénale (diminution de secrétion de motiline)

Nausées et vomissements: (stimulation de zone chémoréceptrice)

b/ FORTE DOSE (IV): Stimulation des Rc DA, α , β

3.3. STIMULATION DES Rc Dopamine (DA)


3.3.2. EFFETS CENTRAUX

3 voies DA au niveau central:

Nigrostriatal: motricité

Mesocortical: humeur

Tubéroinfundibulaire: neuroendocrinologie (PRL)

PHARMACOLOGIE DU SYSTEME ADRENERGIQUE STIMULATION DES Rc DA

- PERIPHERIE
- 1/Faible dose: Rc DA1
- . Vaisseaux= VD (Rc D1):
 - Mésentère
 - Rein
 - Coronaire
 - Cerébral
- Rein:
- réabsorption tubulaire de Na+
- rénine et aldostérone
- 1D mobilité intestinale
- Nausées et vomissements
- (stimulation de zone chémoréceptrice)
- 2/ Forte dose (IV)
 - Effets sur Rc α et β

CENTRAL

3 voies dopaminergiques

-Mésocorticale: humeur

-Nigrostriée: motricité

 tubéroinfundibulaire: neuroendocrinologie (Prolactine)

MEDICAMENTS QUI AGISSENT VIA LES Rc NA et A

1/ VIA LES Rc NA et ADRENERGIQUES α

.médicaments <u>agonistes</u> des Rc α_1 et α_2 :

.médicaments antagonistes des Rc α_1 et α_2 :

• 2/ VIA LES Rc NA et ADRENERGIQUES β

.médicaments <u>agonistes</u> des Rc β_1 , β_2 , β_3

.médicaments antagonistes des Rc β_1 , β_2 , β_3

4. AGONISTES

4.1. AGONISTES DES Rc α

4.2. AGONISTES DES Rc β

4.3. AGONISTES DES Rc DA

4.1. AGONISTES DES Rc α (α +)

4.1.1. Médicaments agonistes des Rc α_1 (α_1^+): a/ Effets périphériques

b/Effets centraux

4.1.2. Médicaments agonistes des Rc α_2 (α_2^{+}): a/ Effets périphériques

b/ Effets centraux

4.1. AGONISTES DES Rc α

 $(\alpha +)$

4.1.1. Médicaments agonistes des Rc α_1 (α_1^+):

a/ Effets périphériques

Effet vasoconstricteur:

- .Traitement de hypotension (orthostatique) ex: mal neuro dégénératives (midodrine: GUTRON*)
- . Traitement de migraine:

-ergotamine: GYNERGENE CAFEINE*
-dihydroergotamine: SEGLOR*

- . Inhibition de la diffusion des anesthésiques locaux
- . Traitement de congestion nasale:

Contracturant du muscle uterin:

.post-partum :-méthylergométrine:METHERGIN*

Mydriatique:

-Phényléphrine+tropicamide: MYDRIASERT* (collyre)

4.1. AGONISTES DES Rc α

4.1.1. Médicaments agonistes des Rc α_1 (α_1^+):

b/ Effets centraux:

augmentation de vigilance +++

Adrafinil: OLMIFON*,

psychotonique, stimule vigilance, diminue besoin de sommeil

mais effets 2aires+++, agitation, agressivité, excitation

Modafinil: MODIODAL*

traitement : hypersomnie idiopathique narcolepsie

4.1. AGONISTES DES Rc α

4.1.2. Médicaments agonistes des Rc $\alpha_2(\alpha_2^+)$:

a/ périphériques:

- α₂ post synaptiques, effet VC
- α_2 présynaptique, en diminuant la libération des catécholamines, annule l'effet α_2 post synaptique

4.1. AGONISTES DES Rc α

4.1.2. Médicaments agonistes des Rc $\alpha_2(\alpha_2^+)$:

b/ centraux

 Diminution de libération de NA au niveau des centres de régulation de TA= <u>Hypotenseurs centraux</u>

- Méthyldopa: ALDOMET*

- Clonidine: CATAPRESSAN*

- Guanfacine: ESTULIC*

- Rilmenidine: HYPERIUM*

Effets 2aires++: risque d'état dépressif (les α_2 -, sont des AD) Si arrêt brutal , effet rebond risque d'HTA++

Clonidine utilisée dans syndrome de sevrage aux morphiniques

INDICATION DES AGONISTES DES Rc α EN THERAPEUTIQUE

- AGONISTES DES Rc α1
- Périphériques
- Utilisation de l'effet V C
 - Hypotension
 - Migraine
 - Augmente effet des anesthésiques locaux
- Effet contracturant utérin:
- Après la délivrance Effet mydriatique (collyre)

- AGONISTES DES Rc α2
- Périphériques
- Diminution de libération de NA

. Central:

- + vigilance
- sommeil

Central:

hypotenseur

4.2. AGONISTES DES Rc \beta

4.2.1. Agonistes β_1

4.2.2. Agonistes β_2

4.2.3. Agonistes β_3

4.2.4. Agonistes mixtes $\beta_{1+}\beta_{2}$

4.2. AGONISTES DES Rc β

4.2.1. Agonistes β_1

Effet cardiaque

Dobutamine: Dobutrex*

TT de Insuffisance cardiaque aigue utilisé en perfusion en milieu hospitalier

4.2. AGONISTES DES Rc β

4.2.2. Agonistes β_2

a/EFFET PERIPHERIQUE:

- Asthme

-Salbutamol: VENTOLINE*

-Terbutaline: BRICANYL*

- Fenoterol: BEROTEC*

- Menace d'accouchement prématuré:

- -Salbutamol: SALBUMOL*

b/ EFFET CENTRAL:

- Antidépresseur

4.2. AGONISTES DES Rc β

4.2.3. Agonistes β_3

en cours d'étude dans obésité

4.2.4. Agonistes mixtes $\beta_{1} + \beta_{2}$

Isoprénaline: Isuprel*
dans bradycardie, ,BAV, choc

PHARMACOLOGIE DU SYSTEME ADRENERGIQUE STIMULATION DES RC $\beta_{\text{\tiny N}}(\beta_1,\beta_2,\beta_3)$

PERIPHERIE

β₁ postsynaptique Cœur: I+, C+,D+,B+= QC+ β₂ postsynaptique relâchement muscles lisses

- Vaisseau
- Bronches
- Utérus
- Sphincter urethral

β₃ présynaptique diminution de libération de NA

β₃ postsynaptique
Augmentation lipolyse (TA blanc)
Augmentation thermogénèse (TA brun)

CENTRAL

β₂ effet antidépresseur

5. ANTAGONISTES

5.1. ANTAGONISTES DES Rc α

5.2. ANTAGONISTES DES Rc β

5.3. ANTAGONISTES DES Rc DA

5. ANTAGONISTES5.1. ANTAGONISTES DES Rc α

5.1.1. ANTAGONISTES DES Rc α_1 a/ EFFET PERIPHERIQUES:

- » Diminution de VC, donc diminution de TA par vasodilatation
- » Relâchement des muscles lisses et des sphincters
- Indications vasculaires:
 - Prazosine: MINIPRESS*: traitement,- de HTA

» - Insuffisance cardiaque

» - Syndrome de Raynaud

- Urapidil: EUPRESSYL*

- Indications urologiques:
 - Alfuzosine: XATRAL*; traitement des signes fonctionnels de adénome de prostate

b/ EFFET CENTRAL:

- Sédation

5. ANTAGONISTES DES Rc α

5.1.2. ANTAGONISTES DES Rc α_2

a/ EFFETS PERIPHERIQUES: α₂- présynaptiques

- Yohimbine: YOHIMBINE*: traitement de - impuissance

- hypotension orthostatique

b/ EFFETS CENTRAUX: α₂- présynaptiques

Antidépresseur

- Miansérine: ATHYMIL*

-Mirtazapine: NORSET*

INDICATION DES ANTAGONISTES DES Rc α EN THERAPEUTIQUE

• Rc α_1^-

• Rc α_2^-

- Périphériques
 - Vasculaires=VD
 - Hypertension artérielle
 - Insuffisance cardiaque
 - Syndrome de Raynaud
 - . Urologiques

Adénome prostate

. Central

Central

Sédatif

antidépresseur impuissance hypotension orthostatique

5. ANTAGONISTES5.2. ANTAGONISTES DES Rc β

5.2.1. PROPRIETES COMMUNES AUX ANTAGONISTES DES Rc β

5.2.2. PROPRIETES PARTICULIERES DES ANTAGONISTES DES Rc β

5. ANTAGONISTES5.2. ANTAGONISTES DES Rc β

5.2.1. PROPRIETES COMMUNES AUX ANTAGONISTES DES Rc β

EFFETS CARDIOVASCULAIRES:

Cœur:

- ralentissement du cœur
- antiarythmique
- diminution du travail du cœur et des besoins en oxygène (traitement de angor)

Diminution de TA

par:

- diminution du débit cardiaque
- inhibition de secrétion de rénine
- diminution du tonus sympathique central

5. ANTAGONISTES5.2. ANTAGONISTES DES Rc β

5.2.2. PROPRIETES PARTICULIERES DES ANTAGONISTES DES Rc β a/ Activité sympatomimétique intrinsèque (ASI)

(activité βetamimétique faible)

2/ Certains sont plus ou moins sélectifs des Rc β_1 ou β_2

 β -cardiosélectifs, si spécifique du Rc β_1 β -nonsélectifs, si bloquent $\beta_1 + \beta_2$

- 3/ Certains ont une activité anesthésique locale, dit stabilisant de membrane
- 4/ Propranolol: effet inhibiteur sur desiodation de T₄ en T₃

INDICATION DES ANTAGONISTES DES Re \(\beta \) EN THERAPEUTIQUE

- CARDIOVASCULAIRES:
 - Angor
 - Hypertension artérielle
 - Antiarythmique
 - » mais contre indication:
 - » BAV
 - » bradycardie

récapitulatif cardiovasculaire des sympathomimétiques

les effets cardiovasculaires des sympathomimétiques sont résumés dans le tableau suivant.

	Effet α (vaisseaux des organes et des muscles)	β ₁ (cœur)	β ₂ (vaisseaux- des muscles)	DA (vaisseaux rénaux et mésentériques)
Noradrénaline et				
sympathomimétiques indirects	ali:		0	. 0
Adrénaline	T	I	Ů,	. 0
Dopamine	4	<u> </u>	0	<u> </u>
Agonistes dopa-	T - 121	-	U	
minergiques	0	0	0	+
Isoprénaline*	0	+	+	0
Dobutamine*	0	+	±	0
Salbutamol*	0	<u>+</u>	+	0
Phényléphrine*	+	0	0	0